IPRIME

Industrial Partnership for Research in Interfacial and Materials Engineering
IPRIME History

- CIE (Center for Interfacial Engineering)
 - Funded by NSF from 1988 to 1999
 - Industrial outreach, 114 resident fellows, 393 PhDs
 - Fostered culture of integrated research, education and industrial interaction
- Members encouraged continued collaboration
- **IPRIME** (Industrial Partnership for Research in Interfacial and Materials Engineering)
 - Legacy organization from CIE
Highly Interdisciplinary (47 faculty in 9 departments)
- Biochemistry, Molecular Biology and Biophysics
- Biomedical Engineering
- Bioproducts and Biosystems Engineering
- Chemical Engineering and Materials Science
- Chemistry
- Electrical and Computer Engineering
- Mechanical Engineering
- Pharmaceutics
- Physics

“Knowledge is one. Its division into subjects is a concession to human weakness.”
- Halford Mackinder

Research is Pre-Competitive and Non-Proprietary

Focus on fundamental science that underlie industrial products and processes

7 Interdisciplinary Research Programs
7 Research Programs

- Biocatalysis and Biotechnology (BB)
- Biomaterials and Pharmaceutical Materials (BPM)
- Coating Process Fundamentals (CPF)
- Electronic Materials and Devices (EMD)
- Flexible Electronics and Photovoltaics (FEP)
- Microstructured Polymers (MP)
- Nanostructural Materials and Processes (NMP)
Members Across the Globe

Saudi Arabia
Saudi Aramco

Japan (1)
Mitsui

South Korea (1)
SK Chemicals

Netherlands (1) DSM
Germany (2) BASF, Evonik
IPRIME Member Companies
Industrial Support

Contributions over $1,400,000 per year from ~33 companies

• **Sponsor Membership** ($60,000 per year)
 - Participation in up to 4 research programs
 - Opportunity to utilize Industrial Fellow Program
 - Representative on the Policy and Planning Board (PPB)

• **Affiliate Membership** ($48,000 per year)
 - Focus on one research program, no Industrial Fellow

• **Small company option**
 - $7,500 minimum or
 - 0.03% of sales per year, up to $48,000
Why IPRIME?

- Partnership
- Future employees
- Facilities
- Knowledge Transfer
Partnership

Companies

• Scientific exchange with academic sector
• Influence research directions
• Leverage government funding (NSF, NIH, DOE)
• Portal/referral to other U resources/capabilities
• Industrial Fellows

Faculty & Students

• Ready source of “hard problems”
• Funding support
• Technology implementation
• Fosters faculty interactions
• Industrial Fellows
<table>
<thead>
<tr>
<th>Company</th>
<th>Employee</th>
<th>Research Topic</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donaldson</td>
<td>Brad Hauser</td>
<td>Advanced Characterization of Superhydrophobic Heterogeneous Materials</td>
<td>Greg Haugstad</td>
</tr>
<tr>
<td>DSM</td>
<td>Thomas van Kempen</td>
<td>Spreading and merging of droplets to make nanoparticulate coatings</td>
<td>Satish Kumar</td>
</tr>
<tr>
<td>Ecolab</td>
<td>Derrick Anderson</td>
<td>Synthesis and characterization of carbon dots using starting materials relevant to solid cleaning and sanitizing products</td>
<td>Christy Haynes</td>
</tr>
<tr>
<td>Mitsui</td>
<td>Ryohei Ogawa</td>
<td>Synthesis of cross-linkable aliphatic polyester elastomers derived from castor oil</td>
<td>Marc Hillmyer</td>
</tr>
</tbody>
</table>
Future Employees

Companies

• Early access to PhD students
• Most graduates work at IPRIME companies

Faculty & Students

• Early student access to employers
• Learn industrial research process and interactions
• Hone communication skills
• Resumes distributed
Supporting Facilities

Companies

• CharFac* (training + analysis)
• Imaging Center
• Polymer Characterization Facility*
• Polymer Synthesis
• Coating Process and Visualization Lab
• Tissue Mechanics*

Faculty and Students

• In-kind equipment contributions
• Industrial utilization of facilities

*Discount for IPRIME members
U. of Minnesota Characterization Facility

- >$20 million of equipment (replacement value)
 - Electron microscopes: 5 TEM, 4 SEM/FIB; cryo, EDS/EELS/EBSD…
 - X-ray scattering: 7 wide- & 1 small-angle; micro, T-dep., 2D detectors
 - Surface analytical: 2 XPS, UPS, Auger, sputtering, microtensiometry
 - Proximal probes: 3 ambient & 2 environmental AFMs; UHV/LT-STM, stylus profilometer, 3 nanoindentors, pin-on-disk tribom., AFM-IR
 - Chemical spectro/microscopy: confocal Raman, FTIR (ATR/DRIFTS)
 - Thin film analysis: RBS w/PIXE/FReS, spectroscopic ellipsometry
- ~10 FTE scientific staff (permanent)
- ~500-600 end users/yr, ~100 external (incl. clients)
- ~140 faculty users/yr from ~35 UMN depts/units
- ~250 students/yr in curricular & short courses
- ~40-50 industrial users/clients per year
- ~15 external academic institutions per year

www.charfac.umn.edu

Other pertinent facilities on campus:
State-of-the-art light microscopy (superresolution, etc.): University Imaging Center (Nikon Ctr Excellence)
Rheology/DSC/TGA, NMR, Mass spectrom., X-ray tomography/electron microprobe
Micro-/Nano-fabrication, Bioprocessing (fermentation, etc.)
Scanning & Transmission Electron Microscopes & FIB (11)
- JEOL 6500 FE-SEM (BS, EDS, EBSD, cathodoluminescence)
- JEOL 6700 FE-SEM (high-resolution)
- Hitachi SU8220 FE-SEM (ThermoNoran EDS, high-res., cryo, BS/mix)
- Hitachi S-4700 FE-SEM (cryo, BS)
- FEI Helios NanoLab G4 dual-beam FIB/FE-SEM (just added)
- JEOL 1200 EX Bio-TEM (LaB₆)
- FEI Tecnai G2 Spirit Bio-Twin (cryo/bio) (LaB₆)
- FEI T12 TEM (LaB₆ with EDS)
- FEI Tecnai G2 F30 FEG-TEM (EF-TEM, cryo/bio, 2-axis tilt for tomog.)
- FEI Tecnai G2 F30 FEG-TEM (EELS, EDS, STEM, HAADF)
- FEI Titan aberration-corrected FEG-TEM (EDX, EELS, STEM, HAADF)
- Two full suites of specimen prep tools (for SEM/TEM + AFM/Raman): hard and soft materials, biological; two cryo-micromotomes

Proximal nanoprobes: AFM, nanoindentors & related (10)
- Omicron ultrahigh vacuum STM/STS LT system (coming soon)
- Two Bruker Nanoscope V Multimode 8 SPMs (with PeakForce QNM, EFM, MFM, KPFM, FMM, fast force volume)
- Intermodulation Products add-on to Bruker SPMs (just added)
- Two Keysight 5500’s (closed loop scanners, current sensing, T/RH control, easy fluid cells, multifrequency); inverted light microscope
- WITec digital pulsed force mode add-on to Keysight 5500
- Anasys nanoTA2 + SThM add-on (heated tip) to Keysight 5500s.
- LabView / custom methods (setpoint ramping, FT shear modulation)
- Hysitron Triboindenter (mapping)
- Hysitron Picoindenter (in situ indentation, inside TEM)
- Keysight Nanoindentor XP (AC loading, storage/loss modulus)
- Custom-built micromechanical tester (IBM MMT)
- Tencor stylus profilometer (up to 14” wide, 2” thick samples)

Not listed: ~30 ancillaries (mainly specimen prep tools)

X-ray Diffraction & Scattering (8)
- Bruker AXS (Siemens) D5005 XRD
- Pananalytical X’pert Pro high-angular resolution XRD (reflectivity, in-plain diffr, rocking curves, reciprocal space maps)
- Bruker AXS micro-XRD (2D detector, 2-axis sample tilt)
- Bruker D8 Discover micro-XRD (2D detector, 2-axis sample tilt)
- Bruker D8 Advance XRD with temperature and humidity control
- Laue diffractometer (crystal orientation)
- Xenocs/SAXSLAB Ganesha SAXS/WAXS/GISAXS (coming soon)

Ion Beam Analysis (elemental composition, depth profiles)
- Rutherford backscattering (RBS); FReS, PIXE/PIGE, NRA
- NEC 5.1 MeV accelerator, He⁺, He++ and H⁺ beams
- Goniometer, channeling : depth/element-specific crystallinity

Surface analytical (elemental, chemical, sputter-profiling)
- Phi versaProbe III XPS/ESCA with UPS: monochromated, small spot, angle resolved; cluster beam sputter profiling (just added)
- SSI XPS (monochromated)
- Auger spectroscopy (AES; scanning microscope, depth profiling)
- Micro contact angle system with high-speed camera (dynamic)

Vibrational spectroscopy (chemical, 3D imaging)
- Thermo FTIR spectrometer (DTGS and MCT detectors), Transm., Refl., ATR, DRIFTS; FTIR microscope
- Witec confocal Raman spectrometer/microscope; full spectroscopic imaging in XY and XZ; 532-nm and 785-nm lasers with dedicated spectrometers; down to 30 cm⁻¹ vibrations

Visible light based analysis &imaging (also see U Imaging Ctr)
- Woollam spectroscopic ellipsometer (film thickness and optical constant characterization over λ=200-1100 nm)
- Nikon light microscope - bright/dark field, polarization, phase, fluorescence, differential interference contrast (DIC)

Details at www.charfac.umn.edu
CharFac Technical Staff

13 professionals (11.15 FTE) manage 3-site capabilities. Includes expert analytical services, education/training, assistance/consultation, methods development, collaboration.

Chris Frethem SEM (cryo and bio/soft material emphasis)
Dr. Javier Garcia-Barriocanal XRD, Small-angle X-Ray scattering, IBA, ellipsometry
Dr. Bob Hafner High-contrast and cryo TEM (bio, soft materials)
Dr. Greg Haugstad AFM, Ion beam analysis (IBA: RBS, PIXE, FReS & related)
Dr. Han Seung Lee SEM/TEM (cryo emphasis)
Dr. Bing Luo Confocal Raman/FTIR, XPS/Auger, micro-contact angle
Dr. Jason Myers FEG-TEM (HR/STEM/EDS/EELS), FIB
Dr. John Nelson (0.1 FTE) Nano/micro-mechanical, profilometry
Dr. Geoff Rojas Auger/XPS, STM/AFM, TEM
Dr. Nick Seaton Materials SEM, EDS/EBSD/cathodoluminescence
Dr. Seema Thakral (0.6 FTE) XRD, Small-angle X-Ray scattering
Dr. Wei Zhang (0.45 FTE) Cryo FEG-TEM, 3D reconstruction, tomography
Fang Zhou, MS Bio EM specimen prep. (cryo)microtomy, TEM (bio, soft material)

Contact Information at www.charfac.umn.edu/staff
Sought usage of the Characterization Facility by Industry

Analytical services (proprietary/commercial)
- Sample analysis by facility staff. (High commercial charge rates.)
- 1/3 discount on *instrument time* with IPRIME consortium membership.

Hands-on (proprietary/commercial)
- Obtain training for independent use of instruments (at high charge rates).

Sponsored projects (full overhead-bearing; well-defined contract)
- Fund grad student, postdoc and/or staff scientist(s) under University principal investigator. (Low internal charge rates.)

IPRIME consortium collaborations (no overhead, no contract or deliverables)
- Collaborate on publishable research with an IPRIME principal investigator and his/her colleagues, no hands-on usage of CharFac. *(Low internal charge rates.)*
- Become an *industrial fellow* in collaboration with IPRIME principal investigator on publishable research. *May include hands-on usage at low internal charge rates.*

Methods development collaboration (no UMN overhead, no contract or deliverables)
- Fund CharFac technical staff member(s) on publishable methods research (*academic instrument rates, no hands-on*). Modeled after IPRIME industrial fellow program.
Knowledge Transfer

Virtual Annual Meeting* (August 4-6, 2020)
Due to the Covid-19 pandemic we will offer virtual:

- Program Reviews
- Poster Session

Mid-Year Workshops*
- January 14, 2020

Website with members-only features*
- Webcasts, Research Information, Exclusive Presentations

Short Courses (member discounts)
- Coating Process Fundamentals (To be determined)
- Rheological Measurements (August 16-21, 2020)

Industrial Fellows (non-proprietary)

Sponsored Research (proprietary) Gifts (non-proprietary)
2019 Annual Meeting
May 28-30, 2019

Featuring presentations on:
• New Developments in Coating
• Sustainability of Polymers
• From Commodity to Value-Added Surfactants: Structure, Phase Behavior, and Applications
• Synthetic Biology: An Overview of Industrial Potential.
• Wearable Technology -- Materials and Applications II
• Scalable Photonics and Metamaterials
• Ultra-Wide Gap Materials for High-Powered Electronics

Mid-Year Workshops
January 15-17, 2019
• “Wearable Technology – Materials and Applications”
• “Characterization Methods for Surfaces, Interfaces and Thin Films”

Short Courses
Coating Process Fundamentals Short Course
(May 21-23, 2019)
Rheology Short Course
(August, 2020)

2018 Annual Meeting
May 29-31, 2018

Featuring presentations on:
• Droplet-Based Coating and Printing
• Polymer Nanocomposites: Preparation, Structure, & Properties
• Bio Polymers and Materials
• Preparation & Processing of Biomedical & Pharmaceutical Materials
• Advances in Flexible Electronics and OLED Displays
• Material Options for Transparent Conductive Oxides
• Characterization-focused Industrial Fellow Collaborative Projects: Examples, Opportunities, & Challenges

Mid-Year Workshops
January 9-10, 2018
• “3D Printing of Polymers: Materials and Processes” (CPF & MP) Jan 9, 2018
• “Remote Imaging of Implanted Biomaterials and Theranostics” (BPM) Jan 10, 2018

Short Courses
• Coating Process Fundamentals Short Course
(May 22- 24, 2018)
• Rheology Short Course
(August 12-17, 2018)
Welcome to IPRIME

IPRIME | See What We Are

Upcoming Events

Mid-Year Workshop
Register Now!
January 14, 2020
Full Agenda Here

CPF Short Course
May 19-21, 2020

Annual Meeting
May 26-28, 2020

Rheology Short Course 2020
June 7-12, 2020
Website
Membership Benefits

• Access to latest research results
• Influence on research directions
• Access to world-class faculty expertise
• Early access to PhD students
• Career development for scientists/engineers
 – Industrial Fellows program
• Reduced rates at supporting labs
• Networking with other IPRIME companies
7 Research Programs

• Biocatalysis and Biotechnology (BB)
• Biomaterials and Pharmaceutical Materials (BPM)
• Coating Process Fundamentals (CPF)
• Electronic Materials and Devices (EMD)
• Flexible Electronics and Photovoltaics (FEP)
• Microstructured Polymers (MP)
• Nanostructural Materials and Processes (NMP)
Biocatalysis and Biotechnology (BB)

<table>
<thead>
<tr>
<th>Investigator</th>
<th>Department</th>
<th>Expertise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mikael Elias *</td>
<td>Biochem</td>
<td>Protein engineering and evolution, molecular modelling and recognition, bioremediation and quorum quenching strategies.</td>
</tr>
<tr>
<td>Mark Distefano</td>
<td>Chem</td>
<td>Organic and biochem., protein conjugates for therapeutic and biotechnology applications.</td>
</tr>
<tr>
<td>Wei-Shou Hu</td>
<td>CEMS</td>
<td>Systems biotechnology, biochemical engineering, cell culture bioprocessing, stem cell technology</td>
</tr>
<tr>
<td>Romas Kazlauskas</td>
<td>Biochem</td>
<td>Biocatalytic synthesis of chemical intermediates and biofuels, enzyme modification for new reactions.</td>
</tr>
<tr>
<td>Ping Wang</td>
<td>BBE</td>
<td>Enzymology and biocatalysis, bioconversion and biosynthesis, biomaterials and functional coatings, bioelectrochemical processing, biosensors.</td>
</tr>
<tr>
<td>Lawrence Wackett</td>
<td>Biochem</td>
<td>Enzymes in biotechnology, immobilization technology, bioremediation, computer prediction tools for biocatalysis</td>
</tr>
</tbody>
</table>

*Program Leader (Email: mhelias@umn.edu; Phone: 612-626-1915)

Chemical and fuel bioprocessing; Biocatalyst engineering; Biotransformation and Bioremediation; Enzyme evolution; Bio-based polymers and biocoatings; Pathway engineering; Synthetic biology; Systems biotechnology; Cell culture bioprocessing
Biomedical and Pharmaceutical Materials (BPM)

<table>
<thead>
<tr>
<th>Investigator</th>
<th>Department</th>
<th>Expertise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ron Siegel*</td>
<td>Phm¹/BME²</td>
<td>hydrogels, drug delivery systems, microfabrication</td>
</tr>
<tr>
<td>Wei Shen</td>
<td>BME</td>
<td>bioactive materials</td>
</tr>
<tr>
<td>Calvin Sun</td>
<td>Phm</td>
<td>drug crystal and particle engineering</td>
</tr>
<tr>
<td>Raj Suryanarayanan</td>
<td>Phm</td>
<td>solid state properties of drugs, stability of drug/biomaterial formulations</td>
</tr>
<tr>
<td>Bob Tranquillo</td>
<td>BME/CEMS</td>
<td>fabrication and characterization of bioartificial cardiovascular replacement tissues</td>
</tr>
<tr>
<td>Chun Wang</td>
<td>BME</td>
<td>bio-molecular materials, polymer-based DNA and drug delivery, protein-based tissue scaffolds</td>
</tr>
</tbody>
</table>

*Program Leader (Email:siege017@umn.edu)

Affiliated Investigators: Marc Hillmyer, Theresa Reineke, Tom Hoye,

Pharmaceutics; Biomedical Engineering; Chemical Engineering and Materials Science, Chemistry

- Biomaterials for drug delivery, medical device coatings, and tissue engineering
- Drug/medical device combinations, characterization of drug/materials interactions
- Cell-based fabrication of bioartificial tissues
- Novel tissue mechanical testing and analysis methods
Coating Process Fundamentals

<table>
<thead>
<tr>
<th>Investigator</th>
<th>Department</th>
<th>Expertise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lorraine F. Francis*</td>
<td>CEMS</td>
<td>Solidification, stress development, microstructure, printing</td>
</tr>
<tr>
<td>Satish Kumar</td>
<td>CEMS</td>
<td>Transport processes, interfacial phenomena, microfluidics</td>
</tr>
<tr>
<td>Marcio S. Carvalho**</td>
<td>CEMS</td>
<td>Fluid mechanics, rheology, numerical methods</td>
</tr>
<tr>
<td>Alon V. McCormick</td>
<td>CEMS</td>
<td>Curing, thermodynamics & kinetics, NMR, stress development</td>
</tr>
<tr>
<td>C. Daniel Frisbie</td>
<td>CEMS</td>
<td>Printing processes, printed electronics</td>
</tr>
<tr>
<td>Xiang Cheng</td>
<td>CEMS</td>
<td>Colloids, polymers, rheology, visualization</td>
</tr>
<tr>
<td>Wieslaw Suszynski***</td>
<td>CEMS</td>
<td>Coating process experiments, apparatus, flow visualization</td>
</tr>
</tbody>
</table>

Associated Investigators: Cari S. Dutcher, Sungyon Lee

*Program Leader

**Pontificia Universidade Catolica, Rio de Janeiro

***Research Engineer and Coating Process and Visualization Laboratory Manager
Electronic Materials and Devices (EMD)

<table>
<thead>
<tr>
<th>Investigator</th>
<th>Department</th>
<th>Expertise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steven Koester*</td>
<td>ECE</td>
<td>Electronic devices, semiconductors</td>
</tr>
<tr>
<td>Bharat Jalan*</td>
<td>CEMS</td>
<td>Complex oxides, molecular beam epitaxy</td>
</tr>
<tr>
<td>Steve Campbell</td>
<td>ECE</td>
<td>Thin-film photovoltaics, 2D materials</td>
</tr>
<tr>
<td>Paul Crowell</td>
<td>Physics</td>
<td>Magnetism, transport, ultra-fast spectroscopy</td>
</tr>
<tr>
<td>Dan Frisbie</td>
<td>CEMS</td>
<td>Organic electronics, electrolyte gating</td>
</tr>
<tr>
<td>Chris Leighton</td>
<td>CEMS</td>
<td>Electronic/magnetic properties, film/layer growth</td>
</tr>
</tbody>
</table>

Collaborators
Andre Mkhoyan (CEMS), Xiaodong Xu (U. Washington), Ludwig Bartels (UCR), Chris Palmstrøm (UCSB), Chris Kim (ECE)

* Co-Program Directors

Synthesis, structural and chemical characterization of materials relevant for a wide range of electronic, optical and magnetic devices. Particular emphasis is placed on the understanding of the fundamentals of electronic structure and transport in electronic and magnetic materials, in addition to the materials science, physics and chemistry of the interfaces and nanostructures that play a vital role in device operation.
Flexible Electronics and Photovoltaics (FEP)

<table>
<thead>
<tr>
<th>Investigator</th>
<th>Department</th>
<th>Expertise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russell Holmes*</td>
<td>CEMS</td>
<td>Thin films, LEDs, solar cells</td>
</tr>
<tr>
<td>David Blank</td>
<td>CHEM</td>
<td>Ultrafast optical spectroscopy</td>
</tr>
<tr>
<td>Chris Douglas</td>
<td>CHEM</td>
<td>Molecular synthesis</td>
</tr>
<tr>
<td>Vivian Ferry</td>
<td>CEMS</td>
<td>Optical materials, plasmonics, metamaterials, nanocrystals</td>
</tr>
<tr>
<td>C. Daniel Frisbie</td>
<td>CEMS</td>
<td>TFTs and printed electronics</td>
</tr>
</tbody>
</table>

*Program Leader

Interested in the design of materials, device architectures, and processes for the realization of flexible electronics and optoelectronics based on organic and hybrid organic-inorganic materials
Investigator

<table>
<thead>
<tr>
<th>Investigator</th>
<th>Department</th>
<th>Expertise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chris Ellison *</td>
<td>CEMS</td>
<td>Composites, thin films, lithography fibers, photopolymerization, & polymer processing</td>
</tr>
<tr>
<td>Frank S. Bates</td>
<td>CEMS</td>
<td>Thermodynamics, scattering, synthesis</td>
</tr>
<tr>
<td>Michelle Calabrese</td>
<td>CEMS</td>
<td>Rheology and processing, in situ scattering, new techniques and analyses</td>
</tr>
<tr>
<td>Kevin Dorfman</td>
<td>CEMS</td>
<td>Modeling, confined polymers, DNA</td>
</tr>
<tr>
<td>Marc A. Hillmyer</td>
<td>CHEM</td>
<td>Polymer synthesis and characterization (Director: Polymer Synthesis Facility)</td>
</tr>
<tr>
<td>Timothy P. Lodge</td>
<td>CHEM/CEMS</td>
<td>Polymer dynamics, solutions, scattering</td>
</tr>
<tr>
<td>Chris Macosko</td>
<td>CEMS</td>
<td>Rheology, processing</td>
</tr>
<tr>
<td>Mahesh Mahanthappa</td>
<td>CEMS</td>
<td>Polymer Science and Engineering</td>
</tr>
<tr>
<td>David C. Morse</td>
<td>CEMS</td>
<td>Theory and modeling</td>
</tr>
<tr>
<td>Theresa Reineke</td>
<td>CHEM</td>
<td>Biomedicine, Diagnostics, Targeted Delivery</td>
</tr>
</tbody>
</table>

Collaborators include:

Lorraine Francis (CEMS), Dan Frisbie (CEMS), Tom Hoye (CHEM), Chris Leighton (CEMS),
Ron Siegel (PHRM), Bill Tolman (CHEM)

*Program leader

Synthesis, characterization, dynamics, processing, properties, and theory
Nanostructural Materials & Processes (NMP)

<table>
<thead>
<tr>
<th>Investigator</th>
<th>Dept</th>
<th>Expertise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alon McCormick*</td>
<td>CEMS</td>
<td>Reaction Engineering of Materials Synthesis; Spectroscopy; Molecular Simulation</td>
</tr>
<tr>
<td>C. Daniel Frisbie</td>
<td>CEMS</td>
<td>Molecular Materials and Interfaces; Molecular Electronics</td>
</tr>
<tr>
<td>Wayne Gladfelter</td>
<td>CHEM</td>
<td>Materials Chemistry; Inorganic Chemistry; Scanning Probe Microscopy</td>
</tr>
<tr>
<td>Greg Haugstad</td>
<td>CHAR FAC</td>
<td>AFM Scanning Probe Microscopy (Director, Characterization Facility)</td>
</tr>
<tr>
<td>Christy Haynes</td>
<td>CHEM</td>
<td>Porous and plasmonic nanomaterials, nanoparticle toxicity</td>
</tr>
<tr>
<td>R. Lee Penn</td>
<td>CEMS</td>
<td>Environmental Solid State Chemistry</td>
</tr>
<tr>
<td>Andreas Stein</td>
<td>CHEM</td>
<td>Solid State Chemistry of Porous Materials</td>
</tr>
<tr>
<td>Joe Zasadzinski</td>
<td>CEMS</td>
<td>Molecular Fluids, Optical/Electron/Scanning Probe Microscopy</td>
</tr>
</tbody>
</table>

* Program Leader

Synthesis, phase behavior, structure, and performance of surfactants and self-assembled molecular and colloid systems